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Linewidth of the electromagnetic radiation from Josephson junctions near cavity resonances
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The powerful terahertz emission from intrinsic Josephson junctions in high-Tc cuprate superconductors has
been detected recently. The synchronization of different junctions is enhanced by excitation of the geometrical
cavity resonance. A key characteristic of the radiation is its linewidth. In this work, we study the intrinsic
linewidth of the radiation near the internal cavity resonance. Surprisingly, this problem was never considered
before, neither for a single Josephson junction nor for a stack of the intrinsic Josephson junctions realized in
cuprate superconductors. The linewidth appears due to the slow phase diffusion, which is determined by the
dissipation and amplitude of the noise. We found that both these parameters are resonantly enhanced when the
cavity mode is excited but enhancement of the dissipation dominates leading to the net suppression of diffusion
and dramatic narrowing of the linewidth. The line shape changes from Lorentzian to Gaussian when either the
Josephson frequency is shifted away from the resonance or the temperature is increased.
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In a Josephson junction (JJ) biased by a dc voltage V

the supercurrent oscillates with the angular frequency ωJ =
2eV/h̄. This allows us to use the JJs as high-frequency
electromagnetic (EM) generators. The radiation from a single
JJ however is weak, only several picowatts. The radiation
power can be enhanced using arrays of JJs.1,2 In 2007,
coherent and strong terahertz (THz) radiations from intrinsic
Josephson junctions (IJJs) of Bi2Sr2CaCu2O8 (BSCCO)3

has been observed experimentally.4 In this experiment, the
radiation power was estimated as 0.5 μW which is several
orders of magnitude stronger than that from a single junction.
The frequency has ranged from 0.4 to 0.8 THz and inversely
proportional to the mesa width. Such an observation has led
the authors of Ref. 4 to conclude that the strong radiation is
due to the excitation of cavity modes insides the mesa.

Significant progress has been made in the last several
years5–18 and the radiation power is enhanced by two orders of
magnitude. Recently, much attention has been paid to achieve
frequency tunability11,12 and to enhance radiation power by
using mesa arrays.13 These developments suggest that the
IJJs in high-Tc superconductors are extremely promising for
development of efficient sources of THz EM waves. Such
sources would have wide applications in different areas such
as medical imaging, security, and new spectroscopy where
progress is limited by lack of compact solid state generators.19

Besides the radiation power, another figure of merit of the
THz radiation is the linewidth. The linewidth from a single
point junction has been investigated for half a century.20–22

Fluctuations of Cooper pairs21 and later the fluctuations
of quasiparticles22 were taken into account in theoretical
calculations of the linewidth and a satisfactory consistency
between theory and experiments was achieved. The radiation
linewidth from a tall stack of IJJs was calculated in Ref. 23
assuming that the main source of damping is coming from
external radiation. An extremely narrow relative linewidth
(defined as the ratio of linewidth to radiation frequency) of
order 10−9 was obtained. The line shape of radiation coming
from BSCCO mesas at cavity resonance has been measured
recently.10,24 The narrowest lines with a width of 20 MHz
are found in the high bias regime24 while at low bias regime

a typical linewidth is about 0.5 GHz.10,24 As excitation of
the cavity mode is essential for synchronization of IJJs, it
is important to understand its influence of the radiation line
shape. Surprisingly, no theory exists on the linewidth of the
radiation from JJs near cavity resonances neither for a long JJ
nor for a stack of IJJs.

Here we present both analytical and numerical study on
the linewidth of high frequency radiation from a JJ or a stack
of IJJs near cavity resonances due to thermal fluctuations.
The linewidth broadening is caused by the diffusion of
the phase at wave number k = 0. The line shape changes
from Lorentzian to Gaussian when temperature is increased.
Fluctuations with nonzero wave vectors lead to the suppression
of the radiation power. As voltage is tuned close to the cavity
resonance, the line width is sharpening significantly and being
inverse proportional to the volume of the system. For typical
parameters, the line shape is Lorentzian and the linewidth
can be expressed in terms of IV characteristics. We give a
theoretical limit for the linewidth using typical parameters for
BSCCO.

For simplicity, let us first consider a single JJ with spatial
modulation of the critical current.25 The modulation of the
critical current may be due to the defects in the junction, also
can be introduced intentionally. A single junction with uniform
external magnetic fields and the π phase kink state in a stack
of IJJs also reduce to this model.26 The equation of motion in
dimensionless units can be written as25,27

∂2
t θ + β∂tθ + g(x) sin θ − ∇2

2dθ = Jn(r,t) + Jext, (1)

where β is the damping due to the quasiparticle conductivity,
∇2

2d ≡ ∂2
x + ∂2

y and r = (x,y). The radiation is weak and the
boundary condition can be approximated as ∂nθ = 0, where n
is a unit vector normal to the surface. The spatial modulation
is assumed along the x direction. Jn(r,t) is the white-noise
current satisfying the fluctuation dissipation theorem (FDT)
valid in equilibrium

〈Jn〉 = 0, 〈Jn(r,t)Jn(r′,t ′)〉 = 2Tβδ(t − t ′)δ(r − r′). (2)
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FIG. 1. (Color online) (a) IV curve, (b) the dynamic conductivity
βd and the inertial term η, (c) the Lorentzian linewidth, and (d) the
Debye-Waller factor normalized by temperature T . Parameters are:
β = 0.02, Lx = 0.4, Ly = 1.5, and F = π/4 for a step modulation
of critical current g(x) = −sign(x − Lx/2).

When the JJ is driven into the voltage state where the phase
rotates following the ac Josephson relation, the FDT is violated
as demonstrated below.

The Josephson junction is characterized by the
intrinsic cavity modes with wave numbers knm =
(kxn, kym) = (nπ/Lx, mπ/Ly) and frequencies ωnm =√

(nπ/Lx)2 + (mπ/Ly)2. The cavity mode may be selected by
the voltage of the junction, which determines the Josephson
frequency. The x-modulated Josephson current couples the
Josephson oscillations to the cavity modes with wave numbers
kn0. Without loss of generality, we consider the thermal
fluctuations around the mode (π/Lx,0). In the voltage state
without noise Jn = 0, the phase is described by θ0 = ωJ t +
Re[A exp(iωJ t)] with A = iF/(−ω2

J + iβωJ + k2
x1) and F =

2
Lx

∫ Lx

0 dx cos(kx1x)g(x). Here ωJ is the angular frequency
determined by the dc voltage V , ωJ = V . We restrict to the
analytically tractable region A � 1. In this case, the IV curve
Jext = ωJ t + 〈sin θ0(r,t)〉r,t is given by

Jext = βωJ + F 2

4

βωJ(
ω2

J − k2
x1

)2 + β2ω2
J

, (3)

where 〈· · ·〉r,t is the spatial and temporal average. We introduce
the dynamic conductivity βd ≡ dJext/dωJ ,

βd = β + βF 2

4

(
ω2

J − k2
x1

)2 − β2ω2
J − 4ω2

J

(
ω2

J − k2
x1

)
[(

ω2
J − k2

x1

)2 + β2ω2
J

]2 .

(4)

The first part is due to the usual conductivity β and the second
part is due to resonant contribution, which sharply increases as
ωJ → kx1. As we will reveal later, the linewidth is determined
by βd . In Fig. 1, the typical IV curve and βd are shown, both
of which are enhanced at the resonance.

To calculate the linewidth, we need to know the response of
the phase to the noise current. The phase is θ = θ0 + θ̃ , with

the phase due to the noise θ̃ being governed by

∂2
t θ̃ + β∂t θ̃ + g(x) cos(θ0)θ̃ − ∇2

2d θ̃ = Jn. (5)

Phase diffusion is determined by slow phase dynamics
corresponding to small frequencies 	 � 1. Due to the
Josephson oscillations, the modes with different frequencies
are mixed and the slow mode with frequency 	 is coupled
to the fast modes with frequencies 	 ± ωJ . Near the cavity
resonances the fast modes are resonantly enhanced and one
can neglect coupling to the higher-frequency modes. Therefore
the dominant contribution is given by (kx ≈ 0,kym,	) and
(kx1,kym,	 ± ωJ ).26 The solution can be written as

θ̃ (r,t) =
∑

p=−1,0,1

∞∑
m=0

ap(x,kym) cos(kymy) exp[i(	 + pωJ )t],

(6)

with a0(x,kym) ≈ a0(kym) and a±1(x,kym) ≈ a±1(kym)
cos (kx1x). Substituting Eq. (6) into Eq. (5) and separating
each frequency component, we obtain coupled equations for
the slow and fast components. Excluding the fast components
leads to the equation for the slow component(−η	2 + iβd	 + c2

	k2
ym

)
a0(kx = 0,kym,	) = J̃ (ωJ ). (7)

All parameters of this equation have the regular and resonance
contributions. In particular, the dissipation parameter βd

coincides with the reduced differential conductivity Eq. (4).
The parameters c2

	 and η are given by, c2
	 = 1 + F 2Re[(ω2

J +
iβωJ − k2

x1)−2]/4 and

η = 1 + F 2

4
Re

[
k2
x1 + 3ω2

J − 3iβωJ + β2(
k2
x1 − ω2

J + iβωJ

)3

]
. (8)

η ≈ 1 and c2
	 ≈ 1 off the resonance and are enhanced near the

resonance as shown in Fig. 1(b). It is important to note that
the noise amplitude is also enhanced near the resonance and
is proportional to the total current, Eq. (3),

〈|J̃ (ωJ )|2〉 = 2Tβ

LxLy

(
1 + F 2

4

1(
ω2

J − k2
x1

)2 + β2ω2
J

)

= 2T

LxLy

Jext

V
. (9)

The phase diffusion constant D0 is given by D0 =
〈|J̃ (ωJ )|2〉/β2

d and can be represented as

D0 = 2T
IR2

d

V
, (10)

where I = JextLxLy is the current and Rd = 1/(βdLxLy) =
dV/dI is the differential resistance. It is important to empha-
size that in this nonequilibrium regime the FDT is violated for
the slow mode 〈J̃ (t)J̃ (t ′)〉 �= 2Tβdδ(t − t ′). The spectrum for
the a0 mode is 	2(kym) = (iβd	 + c2

	k2
ym)/η, which becomes

gapless when kym → 0 as a consequence of the invariance with
respect to constant phase shift. Thus this diffusive mode is most
important for the linewidth broadening, and we will consider
this mode in the following calculations of the linewidth.

214511-2



LINEWIDTH OF THE ELECTROMAGNETIC RADIATION . . . PHYSICAL REVIEW B 87, 214511 (2013)

In the presence of the slow fluctuating phase,

θ̃0 =
∫

d	

2π

∑
m

a0 cos(kymy) exp(i	t),

the supercurrent density Js(x,y) = g(x) sin[ωJ t + θ̃0] is also
fluctuating which gives rise to the nonzero linewidth. Here
we have neglected the weak plasma oscillation inside the sine
function. The fluctuating plasma oscillation φ̃(kx1,kym,ω) is
given by

φ̃ = −F
∫

dtdy sin(ωJ t + θ̃0) exp(−iωt)

Ly

(
k2
x1 − ω2

J + iβωJ

) . (11)

The linewidth is determined by the spectrum density S =
〈φ̃(kx1,0,ω)φ̃(−kx1,0, − ω)〉

S = F 2
∫

dtdy cos(ωJ t) exp(−iωt) exp[−K−(y,t)/2]

(kx1 − ωJ )2 + (βωJ )2
, (12)

where K−(y,t) = 〈[θ0(y,t) − θ (0,0)]2〉 is the fluctuation
phase correlation function which can be approximately evalu-
ated as

K−(y,t) ≈ 2W + D0

[
t − η

βd

(1 − exp(−tβd/η))

]
. (13)

Here

W (y,t) = D0β
2
d

2

∑
m>0

∫
d	

(
1 − exp[i(kymy + 	t)](

η	2 − c2
	k2

ym

)2 + (βd	)2

)

accounts for the contribution from the gapped modes with
kym > 0 and the rest term in K−(y,t) accounts for the diffusive
mode with kym = 0. In the interesting region where βd � D0

and Ly � 4πc	
√

η/βd , we obtain

W = πD0βdL
2
y

/(
6c2

	

)
, (14)

which becomes independent on time and coordinate. W

accounts for the suppression of the radiation and is known as
the Debye-Waller factor. The Debye-Waller factor decreases
near the resonance as shown in Fig. 1(d). The broadening
of the linewidth is due to the second term in K−. In the re-
gion when D0/2  βd/η, K−(t) = D0βdt

2/(2η) and the line
shape is

S = F 2Ly exp(−W/2)(
k2
x1 − ω2

J

)2 + (βωJ )2
exp

[ −(ω − ωJ )2

D0βd/(2η)

]
. (15)

The line shape is Gaussian with the linewidth �G ≡
�ω/(2π ) = D0βd/(8πη). In the other limit D0/2 � βd/η,
the line shape is determined by slow phase diffusion at large
times K−(t) ≈ D0t

S = D0F
2Ly exp(−D0η/βd ) exp(−W/2)

2
[(

k2
x1 − ω2

J

)2 + (βωJ )2
][

(ω − ωJ )2 + D2
0/4

] . (16)

The line has a Lorentzian shape with a width �L = D0/(2π ).
The diffusion of the gapless perturbation a0(kym = 0) with
a diffusion constant D0 caused by thermal fluctuations is
responsible for the linewidth broadening. For typical param-
eters of Nb-Al/AlOx-Nb JJs with Lx = Ly = 10λJ at low
temperature 4.2 K, we have β ≈ 0.1, T ≈ 10−3, where λJ

is the Josephson length λJ ≈ 10 μm.27 The line shape in

FIG. 2. (Color online) Comparison of the line shape obtained
analytically and numerically both off the resonance (a) and at the
resonance (b). The linewidth sharpens significantly at the cavity
resonance. Parameters are the same as those in Fig. 1 and T =
1.778 × 10−5.

this region is Lorentzian because D0/2 � βd/η. Approaching
the resonance, the linewidth decreases significantly as shown
in Fig. 1(c). In both cases, the line shape is proportional
to T and is inversely proportional to the lateral area of the
junction LxLy . This behavior is very natural. Qualitatively,
one may treat the JJ as a two-dimensional ensemble of
oscillators. If these oscillators are synchronized, the linewidth
is sharpened as the inverse of the population of oscillators,
which is proportional to the junction area LxLy .1 However as
temperature is increased to close to Tc, the line shape evolves
into Gaussian. The crossover from Lorentzian to Gaussian
line shape occurs at the temperature T ∗ = β3

dωJ LxLy/(ηJext).
Such Lorentzian-to-Gaussian crossover in the line shape was
predicted for a point junction20 and for the Josephson flux flow
region.28

For comparison, we performed the numerical calculation
of Eq. (1). We assumed that the system is uniform along the
y direction meaning that only the kym = 0 mode is taken into
account. We calculated the ac electric field at one edge of
the JJ at x = 0 and then performed the Fourier transform to
obtain the spectrum. The results for numerical calculations and
analytical treatment are shown in Fig. 2. Off the resonance
there is a perfect agreement between two approaches. When
the voltage V = ωJ is tuned close to the cavity resonance, the
amplitude of the plasma oscillation A increases and our theory
based on linear expansion becomes inaccurate in this strongly
nonlinear region. There is a small discrepancy between the
analytical and numerical results.

We next proceed to study the radiation linewidth for a stack
of free-standing IJJs. The dynamics of the phase difference θl

in the lth junction are described by29–35

[(1 + βab∂t ) − ζ�(2)]
[

sin θl + βc∂tθl + ∂2
t θl + j̃z(r,l,t)

]
= (1 + βab∂t )∇2

2dθl + ∇2d · [ j̃ab(r,l + 1,t) − j̃ab(r,l,t)],

(17)

where �(2)hl ≡ hl+1 + hl−1 − 2hl is the finite difference
operator, ζ = (λab/s)2 is the inductive coupling, and βc and
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βab are dissipation parameters due to the out-of-plane and
in-plane quasiparticle conductivities.35 The out-of-plane j̃z

and in-plane Gaussian noise current have the correlators

〈j̃z(r,l,t)j̃z(r′,l′,t ′)〉 = 2T βcζ
−1δll′δ(r − r′)δ(t − t ′), (18)

〈j̃μ(r,l,t)j̃υ(r′,l′,t ′)〉 = 2T βabδll′δ(r − r′)δ(t − t ′)δμυ, (19)

with μ,υ = x,y. When the Josephson frequency approaches
the cavity mode (kx1,0), the π kink state is stabilized15,16

θl = ωJ t + θs,l(x) + A cos

(
π

Lx

x

)
exp(iωJ t), (20)

where θs,l(x) runs abruptly from 0 to π at the center of the
junction, which can be treated as a step function θs,l(x) =
[sign(x − Lx/2) + 1]π/2.16,36 In the absence of thermal fluc-
tuations, Eq. (17) reduces to Eq. (1) with a step modulation
g(x) = −sign(x − Lx/2).26 For the same reason, the linewidth
is due to the phase diffusion with the gapless mode with
k = 0, while the gapped modes with k �= 0 contribute to
the Debye-Waller factor. The most important difference is
that the noise amplitude, Eq. (9), acquires an additional
1/N factor because the effective noise current for the slow
mode is given by averaging over independent noise currents
in all synchronized junctions. Here N is the number of
junctions. Correspondingly, the phase diffusion coefficient
D0 also becomes N times smaller. The linewidth in the IJJs
case is again given by Eqs. (15) and (16) with D0 → D0/N ,
and with a different Debye-Waller factor. For the Lorentzian
line shape when D0/2 � βd/η, the linewidth in terms of IV

curve is �L = T IR2
d/(πV N2), where Rd and V are the total

differential resistance and voltage over the whole stack. As
R2

d/V N corresponds to the contribution from one junction
and does not depend on N , the linewidth of the stack contains
an additional 1/N factor in comparison with a single junction,
Eq. (10), due to the in-phase oscillations in different junctions.

The linewidth can be expressed in term of IV character-
istics. The same expression was also derived a long time ago
for a point junction.22 For an ideal case when all junctions in
the stack are synchronized, we estimate the intrinsic linewidth
of the IJJs for N = 600 to be � = 0.1 MHz at T = 4.2 K,
which is a fundamental limit for the THz generator based on
BSCCO. In experiments, the junctions are usually partially

synchronized, and the linewidth is larger than that in the ideal
case. Furthermore, the linewidth decreases with temperature
if Rd (T ) drops fast when T increases.

For the mesa structures used in experiments,4 there is
an additional dissipation due to the radiation into the base
crystal.37 This dissipation can be described using an effective
larger damping coefficient β ′. Off the resonance, the linewidth
sharpens due to the radiation into base crystal because D0

decreases with β according to Eq. (10). However near the
resonance, the linewidth increases since D0 increases with β

near the resonance.
Finally we discuss the relationship between the derived

linewidth and the quality factor of the cavity. The quality factor
for the JJs in Eq. (1) is Q = ωnm/β, and the corresponding
linewidth is �c = 2Q/ωJ . �c is a property of the cavity and is
independent on the gain medium (Josephson oscillations). �c

shall be interpreted as the upper bound for the linewidth, which
is realized for the completely unsynchronized Josephson
oscillations. In the case of synchronized oscillations as we
considered here, the phase-diffusion linewidth is much smaller
than �c.

To summarize, we have studied the linewidth of the high
frequency electromagnetic radiation from Josephson junctions
and a stack of intrinsic Josephson junctions near cavity
resonances. The linewidth is caused by the diffusion of the
superconducting phase at the gapless mode with wave number
k = 0. The gapped modes with nonzero wave vectors are
responsible for the suppression of the radiation power. The
linewidth is Lorentzian in the low temperature region and
can be calculated directly from the IV characteristics. We
also predicted a lower bound for the linewidth of the strong
terahertz radiation from Bi2Sr2CaCu2O8.
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